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Abstract 

Increasingly, educational providers are being challenged to use their data stores to improve 

teaching and learning outcomes for their students. A common source of such data is learning 

management systems which enable providers to manage a virtual platform or space where 

learning materials and activities can be provided for students to engage with. This study 

investigated whether data from the learning management system Moodle can be used to 

predict academic performance of students in a blended learning further education setting. 

This was achieved by constructing measures of student activity from Moodle logs of further 

education courses. These were used to predict alphabetic student grade and whether a student 

would pass or fail the course. A key focus was classifiers that could predict likelihood of 

failure from data available early in the term. The results showed that classifiers built on all 

course data predicted student grade moderately well (accuracy= 60.5%, kappa = 0.43) and 

whether a student would pass or fail very well (accuracy= 92.2%, kappa=0.79). However, 

classifiers built on the first six weeks of data did not predict failing students well. In contrast, 

classifiers trained on the first ten weeks of data improved statistically significantly on a no-

information rate (p<0.008) though slightly more than half of failing students were still 

misclassified. The ability to detect early in the course even a minority of students at risk of 

failure is likely to be of use to course administrators given the economic cost involved. The 

evidence indicates that measures of Moodle activity on further education courses could be 

useful as part of an early-warning system at ten weeks. 
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1. Introduction 
 

Datafication, a term introduced to popular usage by Mayer-Schonberger and Cukier (2013), 

can be understood as the conversion of aspects of peoples’ unstructured everyday experience 

into a structured format that can be analysed in a formal system. Datafication is becoming 

pervasive in modern society, for example in health (Ruckenstein & Dow Schüll, 2017), urban 

planning (Tenney & Sieber, 2016), human resources (Chamorro-Premuzic, Akhtar, 

Winsborough & Sherman, 2017), justice (Smith, Bennett Moses & Chan, 2017). New 

technologies result in data being created, often as a by-product of their use. The ease and 

affordability of storing large amounts of data, and the development 

of tools and methodologies to extract knowledge from this data, fuels interest in areas 

like data mining, data science and big data. Organisations operating in diverse sectors 

increasingly view data as a resource whose intrinsic value can be realised through the 

creation of data products.   

 

Advances in learning technologies mean that the process of datafication is occurring in 

education too. Educational organizations now have larger repositories of data than ever 

before and are being challenged to use this data to improve teaching and learning outcomes 

and to enable evidence-based decision making. The European Commission recently 

published a Communication on the Digital Action plan which identified three priority areas 

for action towards making better use of innovation and technology in education and training 

(European Commission, 2018). The third of which is improving education through better 

analysis and foresight. The Data Strategy for the Department of Education and Skills (2017) 

has as one of its objectives to maximize the value and use of data to improve the learning 

experience and the success of learners. This is one of four key objectives the Department set 

to realize its objective of delivering “First Class Data for Education”. 

 

This study takes place within the context of the rapid innovation in technology enhanced 

learning of recent years. This has led to growing volumes of data being stored by educational 

institutions and a consequent emphasis by educational policy makers on the need for 

organisations to become more data informed. One potentially useful source of data that many 

learning providers have access to nowadays is that produced by learning management 

systems (LMS), also sometimes referred to as course management systems or virtual learning 

environments. These systems allow for the creation of online learning spaces where students 

can access learning resources and activities and interact with one another and the instructor.  

 

LMS can be used to deliver courses wholly online or as a complement to more traditional 

classroom teaching (blended learning) and there now exist a range of such systems both 

proprietary and open source (Ülker & Yilmaz, 2016). A useful feature of LMS is that they 

provide the ability to quantify students learning behavior and interactions with the learning 

space in ways that are more difficult to do in traditional ‘face to face’ learning. LMS 

automatically track and store learner’s interactions with the system and this data can then be 

mined or analyzed for insight for example to model student behavior or predict academic 

performance (Papamitsiou & Economides, 2014).  

 

In a recent review of studies published between 2012 and 2018, Viberg, Hatakka, Balter & 

Mavroudi (2018) identified 252 papers in English dealing with learning analytics in 

university populations alone. Hellas, Ihantola, Petersen, Ajanovski, Gutica, Hynninen, 

Knutas, Leinonen, Messom & Nam Liao (2018) found 357 papers between 2010 and 2018 

dealing with the prediction of academic performance. Prediction of student academic 



Irish Journal of Technology Enhanced Learning 

    

 

performance using data from LMS and/or other sources is a common task in educational data 

mining and learning analytics. 

 

Tempelaar, Rienties & Giesbers (2015) compared the predictive value of learning 

dispositions, demographic data from student information systems, data from entry tests, 

formative assessment results and LMS data. They concluded that the LMS data, which was 

from Blackboard in their case, did not substantially predict academic performance and that 

results of formative assessment best predicted underperforming students. Lu, Huang, Huang, 

Lin, Ogata & Yang (2018) found best predictive performance was given by a dataset which 

combined traditional measures (e.g. homework scores, quiz scores) with measures of online 

resource usage (e.g. number of online activities a student engages in per week, number of 

times a student plays a video per week).   

 

Zacharis (2015) found that variables extracted from Moodle LMS usage explained just over 

50% of the variance in final course grade. Jo, Kim, & Yoon (2015) using just LMS data from 

which they extracted proxy variables measuring students time management strategies 

explained approximately 34% of the variance in final test scores. Gasevic, Dawson, Rogers & 

Gasevic (2016) using a large sample of students from 9 university courses found the variance 

explained by their model increased from 5%, when only student characteristics were used to 

predict percent mark, to 16% when trace data from Moodle was added. When analysed by 

course, Moodle data explained between 2% and just over 70% in percent mark depending on 

the course.  

 

In addition to predicting numerical measures of academic performance researchers have also 

tried to predict categorical outcome measures such as alphabetic grade or pass/fail outcomes. 

Macfadyen & Dawson (2010) used logistic regression to correctly classify almost 74% of 

students in their study into pass and fail categories. Accuracy at classifying failing students 

was 81%. Zacharis (2015) achieved accuracy of almost 70% at identifying failing students 

and overall accuracy of 81.3%. Conijn, Kleingeld, Matzat, Snijders & van Zaanen (2016) got 

68.7% overall accuracy on pass/fail prediction. Raga Jr. & Raga (2017) achieved accuracy of 

over 87% with their best performing algorithm on a three-class prediction task. Azcona & 

Casey (2015) achieved 91% accuracy at predicting whether students would pass or fail using 

data from a bespoke learning platform. These studies with university cohorts are using all 

course data from relatively short courses (less than 15 weeks). The usefulness of being able 

to predict academic performance using data from the full duration of a course is an open 

question, since predictions are only available once the course has finished.     

 

It is apparent that wide differences exist in predictive utility of LMS data from study to study. 

In general research indicates that the addition of LMS data to models predicting academic 

performance does improve predictive accuracy but by how much is rather more difficult to 

quantify. Given that studies use different predictor variables, derived from activity on 

different types of LMS, from different courses, taught by different instructors; it should not 

be surprising that there are large differences in predictive accuracy from study to study. 

However, there can be wide differences in predictive accuracy of models trained on data from 

different courses even within the same institution (Gasevic et al, 2016; Conijn, Snijders, 

Kleingeld & Matzat, 2017). One of the main reasons for this is likely due to difference in 

course design and instruction (Macfadyen & Dawson, 2010; Gasevic et al, 2016).  

 

 One of the purposes of research into the prediction of student performance is the 

identification of at-risk students. If students at risk of failing or drop-out can be identified 
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early enough in the course, it may be possible to provide interventions to prevent this 

outcome. In this case there is usually a trade-off between time of prediction and accuracy of 

prediction. Accuracy generally increases over time as more course data becomes available 

(Howard, Meehan & Parnell, 2018). There have been some exceptions, for example, 

Sandoval, Gonzalez, Alarcon, Pichara and Montenegro (2018) who found better predictive 

accuracy for aggregated LMS data earlier in the course. This may be because most of the 

activity on their LMS was passive and students with high grades showed decreasing or no 

activity towards the end of the semester. 

 

Most studies in this area so far have used populations of university students. Examples from 

an Irish context include Azcona & Casey (2015), Gray, McGuinness & Owende (2014) and 

Howard et al (2018). Little, if any, research has been carried out with students in a further 

education context in Ireland.  The aim of this study was to predict student performance using 

data from a LMS in a further education setting in Ireland. Further education classes are 

typically smaller than university ones, so this necessitated combining data from multiple 

classes which may lessen predictive accuracy due to increased sources of variance. On the 

other hand, all classes had the same tutor and were studying subjects in the same discipline 

which controls for instructional factors to some extent. 

 

There were two research questions in this study: 

1. Using measures created from Moodle activity from the full duration of a course, is it 

possible to predict student academic performance on further education courses? 

2. Using the same data but only for the early weeks of a course, the first six weeks and 

the first ten weeks, is it possible to predict whether a student will pass or fail? 

2. Methods 

The Moodle installation used for this study was that of Limerick and Clare Education and 

Training Board (LCETB), a statutory education and training authority formed in 2013 from 

the amalgamation of three former Vocational Education Committees (Co Clare, Co Limerick 

and City of Limerick). There are more than 900 courses and 8000 users on the LCETB 

Moodle site though not all of these are currently active. 

 

2.1 Dataset  

The outcome variables for this study were created from the results of students attending full 

time post leaving certificate courses between 2011 and 2018. The results used were from 29 

classes in 9 different modules. All modules were in the same discipline and had the same 

instructor resulting in a relatively homogenous data sample. Logs for these classes were 

downloaded as comma separated value files using the logs interface in the report’s menu in 

Moodle. Of the 29 classes in the dataset, 20 showed a full academic year of student Moodle 

activity (33 weeks approximately), 1 showed 31 weeks activity, 4 showed 21-24 weeks 

activity, 1 showed 18 weeks activity and 2 showed 11-12 weeks activity. 

 

Results were received for 607 of the 690 students enrolled on Moodle for the classes included 

in the study. Following consultation with the tutor it was determined that the remaining 83 

enrolments were students who had left courses prior to course end date and were not 

submitted for certification. These students were given a mark of 0, a grade of EE (early exit) 
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and a label of F (fail) and added to the 25 enrolments in the results file who had received a 

final mark of 0. This meant there were 108 enrolments in total with the label Early Exit. 

Figure 1 below shows the distribution of grades across the dataset including the percentage. 

 

Figure 1: Distribution of Grades 

The final number of enrolments (n=690) represented 410 individual students since some 

classes contained the same student cohort on more than one module. The overall early exit 

rate for this sample was 15.7% which is almost identical to the national dropout rate on post-

leaving certificate courses estimated from a recent ESRI survey (Solas, 2017).  This dataset 

was restricted by availability of results and represents only a small sample of all the users in 

the system. Thus, results need to be interpreted in the context of a small relatively 

homogenous student sample. 

 

2.2 Classification Tasks 

The first classification task was to determine whether it is possible to predict student 

performance using Moodle data from a blended learning course in a further education setting. 

This involved predicting student alphabetic grade and whether a student would pass or fail 

using variables created from Moodle data for the full duration of a course. 

 

The second classification task was to determine whether it is possible to predict early in a 

course whether a student will pass or fail. This involved predicting the binary pass/fail label 

using variables created from Moodle data for the first six weeks and the first ten weeks of a 
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course. The time periods six and ten weeks were chosen to try and ensure enough data was 

available to accurately train a classifier while at the same time being early enough to allow 

for effective intervention.  

 

There were five class labels used for grade prediction: Distinction (students with mark of 

80%+), Merit (65-79%), Pass (50-64%), Fail (1-49%) and Early Exit (0% or no grade). 

Converting grades to class labels in this way loses some information since classification 

algorithms ignore order in the class labels. 

 

The pass-fail outcome variable was formed by combining Early Exit and Fail students under 

the Fail label and the Distinction, Merit and Pass students under the Pass label. Early Exit and 

Fail students were combined under the one class label to ensure adequate sample size. Date 

of course exit was not known for students and assigning students to Fail or Early Exit 

categories was based on the percentage mark achieved on the course rather than the date of 

course exit. This provides further rationale for combining these two categories.  

 

2.3 Data Preprocessing 

 
To investigate the research questions in this study, a dataset was created where each instance 

was a student, and variables represented aggregates of various aspects of Moodle usage. Each 

instance was associated with the outcome variable student performance as measured both by 

final course grade and pass/fail label.  

 

Log data generated by roles other than ‘student’ were removed from the log files. Module 

name and type were derived from text pattern matching on the Event Name and Component 

fields in the log data and aggregated on the Course and User Name fields. Aggregations were 

based on the variables used in Raga Jr. & Raga (2017) with the addition of login regularity. 

Login regularity shows how often a user logged in relative to other users on the same course 

and so accounts for differences in login frequency between courses. Table 1 below lists all 

the variables used in this study. 

 

Table 1:  Predictor Variables Used in the Study 

Variable 

 

Description 

Total Activity Number of Log Entries by User 

Course Views Number of Course Views by User 

URL Views Number of URL Views by User 

Page Views Number of Page Views by User 

Assignment Views Number of Assignment Views by User 

Assignment Submissions Number of Assignment Submissions by User 

Quiz Views  Number of Quiz Views by User 

Quiz Attempts Number of Quiz Attempts by User 

Lesson Views Number of Lesson Views by User 

Lesson Attempts Number of Lessons Started/Ended/Answered by User 

File Views Number of File Views by User 

Forum Posts Number of Posts made to the Forum by User 

Weekday Logins Number of logins by User during the week (Mon-Fri) 
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Weekend Logins Number of logins by User during the weekend (Sat-Sun) 

Am Early Number of logins by User between 0 and 6am 

Am Late Number of logins by User between 6am and 12pm 

Pm Early Number of logins by User between 12pm and 6pm 

Pm Late Number of logins by User between 6pm and 12am 

On-Campus Login Number of logins by User from an on-campus IP address 

Off-Campus Login Number of logins by User from an off-campus IP address 

Login Regularity Number of unique days this User logged into the course 

normalized by number of unique days any User logged into 

the course. 

 

Once the variables were created the variable files and results files were merged. The 

identifier field was then removed to ensure data analysis was compliant with data protection 

requirements. Course names were also removed and replaced with alphabetic identifiers. All 

predictor variables were standardized to the range 0-1 prior to applying algorithms. This was 

done to avoid variables with larger ranges being given undue weight by the algorithms (Han, 

Kamber & Pei, 2012). 

 

2.4 Algorithms and Software Used 

 
The algorithms used in this study were Random Forest, Gradient Boosting, k Nearest 

Neighbours and Linear Discriminant Analysis. These were chosen due to having shown good 

predictive performance in previous studies (see for example: Sandoval et al, 2018; Howard et 

al, 2018; Raga Jr & Raga 2017; Kondo, Okubo & Hatanaka 2017).  

 

The open source statistical computing software R (R Core Team, 2018) was used for 

analysis. The caret package (Kuhn, 2008) in R was used for the machine learning workflow. 

The implementation of Random Forest used in this study was that in the randomForest 

package (Liaw & Wiener, 2002). The gbm package (Ridgeway, 2007) was used for Gradient 

Boosting. Linear discriminant analysis and k Nearest Neighbour were implemented using the 

lda and knn methods in caret. The varImp method in caret was used to calculate variable 

importance. It does this by calculating the difference in prediction accuracy, averaged across 

all trees in the random forest, resulting from permuting each of the predictor variables (Kuhn, 

2018). 

 

2.5 Model Building and Evaluation 

 
The dataset was split into a training and test set in the ratio 70-30, the training set used to 

build the models and the test set used to check accuracy (Burger, 2018). Classifiers were 

trained on the training set using ten-fold cross validation with ten repeats to tune the hyper-

parameters. Hyper-parameters were varied using random search (Bergstra & Bengio, 2012). 

The hyper-parameters randomly varied were: mtry (number of variables to be selected at each 

split) for random forest; n.trees (number of trees), interaction.depth (tree complexity), 

shrinkage (learning rate), n.minobsinnode (minimum number of instances in a node before 

splitting should commence) for Gradient Boosting Machines; the value for k for k Nearest 

Neighbours. Linear Discriminant Analysis does not have hyper-parameters for tuning. The 

most accurate models on cross validation were then tested for accuracy on the test set to 

ensure the parameter tuning did not overfit the data. 
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In addition to overall model accuracy, the accuracy statistics recall, specificity, precision, and 

balanced accuracy were calculated. Recall shows the proportion of positive examples 

correctly labelled by the classifier, specificity is the proportion of negative examples 

correctly labelled, while precision shows the proportion of examples correctly labelled as 

positive as a proportion of all positive predictions made by the classifier (Han et al, 2012). 

For the pass/fail prediction task, fail was set as the positive class while for multi class 

prediction (the grade prediction task) a ‘one vs all’ approach was used (Kuhn, 2018) so for 

example in the grade prediction task, these measures are calculated for each grade against all 

the examples in the other classes. Balanced accuracy was calculated as the average of recall 

and specificity (Kuhn, 2018).  

 

Cohen’s kappa statistic was calculated for each model. Cohen’s kappa statistic shows how 

well the models’ predictions for class labels agreed with the actual class labels while 

controlling for the accuracy of a random classifier that guesses according to the frequency of 

each class (Gwet, 2014). Landis & Koch’s (1977) suggested guidelines for interpreting 

Cohen’s kappa were followed: Slight Agreement 0-0.2, Fair Agreement 0.21-0.40, Moderate 

Agreement 0.41-0.60, Substantial Agreement 0.61-0.80, Almost Perfect Agreement 0.81-1.0. 

Model accuracies were also compared to the no-information rate using a one-tailed binomial 

test to test whether the number of correct predictions significantly exceeded the no-

information rate. The no-information rate is the accuracy achievable by always predicting the 

most common class label in the test set.  

 

3.Results 

3.1 Prediction Using All Course Data 

The distribution of five class labels used for grade prediction (Figure 1) meant the no-

information rate, or accuracy achievable by always predicting the most common class label 

(Distinction) was 41.2%.  Table 2 shows the accuracy, 95% confidence interval and Cohen’s 

kappa statistic for each of the algorithms on the test set. 

 

Table 2:  Accuracy of each Algorithm on Test Set – Grade Prediction 

 Random Forest LDA k-NN GBM 

Test Accuracy 60.5% 59.5% 59% 57.1% 

95% CI 53-67% 52-66% 52-66% 50-64% 

Kappa 0.43 0.42 0.42 0.41 

 

Random forest was the best performing algorithm with accuracy of just over 60% but the 

results were almost equivalent across all classifiers. The one-tailed binomial test indicated 

that all the algorithms significantly outperformed the no-information rate. Although results 

differed slightly depending on the seed value used, the confidence interval indicates that there 

is a 95% likelihood that the true accuracy of this model lies in the range 53% to 67%. 

 

Table 3:  Accuracy Statistics by Class for Random Forest 
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Class Recall Specificity Precision  Balanced 

Accuracy 

Distinction 0.92 0.65 0.65 0.78 

Merit 0.15 0.94 0.31 0.54 

Pass 0.25 0.90 0.32 0.58 

Unsuccessful 0.23 0.98 0.63 0.61 

Early Exit 0.88 0.95 0.78 0.91 

 

Recall is very good for students at either end of the range of grades, i.e. those with grades of 

distinction and early exit, but not good for the other classes. Specificity is excellent for all 

classes except for distinction for which it is moderate. Class statistics for the other algorithms 

showed a similar pattern in that sensitivity for the class labels Distinction and Early Exit was 

good but much lower for the other three class labels.  

 

The distribution of the pass-fail outcome variable was somewhat imbalanced as there were 

almost three times as many passing students as there were failing students. This means that 

the no-information rate, or accuracy achievable by always predicting Pass, was 73.5%. When 

usage data from the whole course was used to create the predictors, all the algorithms showed 

good performance on the binary classification task. Random Forest (92.2% accuracy) and 

LDA (89.3% accuracy) performed somewhat better than Gradient Boosting (86.9%) and k-

NN (85% accuracy) for this task, but all the algorithms performed significantly better than 

the no-information rate on this task. Best performing algorithm was Random Forest correctly 

predicting 148 out of 152 passing students and 42 out of 54 failing students (kappa=0.79). 

 

3.2 Prediction Using 6-week and 10-week datasets 

To see if it was possible to predict students at risk of failure early enough so that intervention 

could take place, the same variables as in the previous task were used but these were 

constructed on subsets of the data, the first six weeks and the first ten weeks of Moodle data 

for each course.  

 

Accuracy of classifiers trained on variables created using the six-week data set is shown in 

Table 4.  As the courses in this dataset are blended learning courses, not all students show 

Moodle activity in the first six weeks of the course resulting in a reduced dataset (n=644) and 

the no-information rate for this dataset is 75.5% (Passing Students = 486). None of the 

classifiers significantly improved on the no-information rate when only six weeks of usage 

data was used to train them. Recall of all the classifiers is poor. 

 

Table 4:  Accuracy of Pass/Fail Classification on 6–week data set 

 Random Forest k-NN GBM LDA 

Test Accuracy 74.5% 73.4% 69.8% 75.5% 

Recall 0.3 0.15 0.09 0 

Specificity 0.89 0.92 0.9 1 
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Kappa 0.21 0.09 -0.02 0 

 

Table 5 shows accuracy of the classifiers constructed on the first ten weeks of usage data. 

Nearly all students are using Moodle by week ten of the courses and the no-information rate 

for this dataset is 74.8% (n=675, Passing Students=505). Accuracy and kappa statistic have 

improved on the six-week models and the algorithms are now showing predictive accuracy 

significantly greater than the no-information rate. For example, a binomial test comparing 

random forest with the no-information rate resulted in a p-value of 0.008.  

 

Table 5:  Accuracy of Pass/Fail Classification on 10–week data set 

 Random Forest GBM LDA k-NN 

Test Accuracy 82.18% 80.2% 79.2% 77.2% 

Recall 0.41 0.45 0.35 0.29 

Specificity 0.96 0.92 0.94 0.93 

Kappa 0.44 0.41 0.35 0.27 

 

3.3 Variable Importance  

Figure 2 below shows the correlation of predictor variables based on all course data with 

student’s final percentage mark for the whole data set and for each module. The colour 

gradient on the heatmap is red-white-blue. Grey boxes indicate a frequency of zero for that 

activity for all students on the course (na value), in other words that activity was not used on 

the course.  
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Figure 2:  Correlation between percentage mark and predictor variables 

 

It is apparent that in general there is a positive linear relationship between frequency of 

activity on Moodle and student mark. Variables showing highest correlations (>0.4) with 

percentage mark for the whole dataset are login regularity, assignment views, assignment 

submissions, total activity and weekday activity.   

 

Figure 3: Correlation matrix of Predictor Variables 
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Figure 3 shows the correlation matrix of predictor variables. It is apparent that many of the 

variables are positively correlated to some extent. There is some redundancy in the dataset 

since all the variables except for Login Regularity are composed of frequency counts, for 

example Total Activity and Weekday Activity exhibit almost perfect correlation since over 

95% Moodle activity in this dataset occurs on a weekday. 

Figures 4 and 5 show the ten most important variables ranked in descending order of 

importance for random forest on the pass/fail prediction using all data (figure 4) and data 

from just the first ten weeks of the courses (figure 5).  

 

Figure 4:  Variable Importance in Random Forest (Pass/Fail – All Data)  

 
Figure 5:  Variable Importance in Random Forest (Pass/Fail -10 Week dataset)  
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The x axis in the figures indicates the impact on accuracy inferred from permuting the 

variables. Variables with higher impact have higher importance scores. Following the advice 

of Strobl, Boulesteix, Zeileis & Hothorn (2007) the importance scores have not been 

normalised. 

 

4. Discussion 

The first research question in this study considered whether it is possible to predict student 

academic performance on further education courses using variables created using all course 

data. The second research question was whether it is possible to predict performance using 

variables created from early course data only, in this case the first six weeks and first ten 

weeks of courses.  

The results of this study showed that when all course data is used, it is possible to predict 

student alphabetic grade at a level significantly above the no-information rate using only 

Moodle data. All four algorithms used performed significantly better than the no-information 

rate, and all performed within 5% accuracy of one another. Best performance on the grade 

prediction task was given by random forest with accuracy of 60.5% and a kappa of 0.43. This 

indicates we can predict student performance as measured by final course grade on further 

education courses moderately well using just logs of student Moodle activity. This 

performance is close to that found by other researchers (Raga Jr. & Raga, 2017) using similar 

predictors, albeit they used a different type of student population and a three-class prediction 

task. Most researchers on tasks such as this have not reported the kappa value of their models 

which can make comparison difficult particularly when the number of outcome classes 

differs between studies and the classes are imbalanced.  

Although overall accuracy was in the moderate range on the grade prediction task, the 

predictive accuracy of grades at either end of the distribution was high. This may be because 

there were more examples of the grade Distinction with which to train a classifier and 

because the difference in usage patterns between students Early Exit and Distinction students 

was more marked than differences between students with a Fail, Pass or Merit grade. 

For the Pass/Fail classification task, it was possible to predict very well whether students 

would pass or fail using all course data. Random Forest correctly predicted 42 out of 54 

failing students and 148 out of 152 passing students. In other words, approximately 78% of 

failing students and almost 97% of passing students were correctly identified for an overall 

accuracy of more than 92%. This level of performance compares well with previous studies, 

(Macfayden & Dawson, 2010; Conijn et al, 2016) particularly so when one considers that this 

study used Moodle data only whereas other studies included additional information such as 

assessment scores. Several studies have shown that course assessment scores are a useful 

predictor of student performance (Tempelaar et al, 2015; Conijn et al, 2017). Additionally, 

the dataset in this study was comprised of students from different courses which can lessen 

predictive accuracy (Gasevic et al, 2016).  

There are several possible reasons for the relatively good performance of the binary 

classifiers using data from the full duration of courses. Most courses in this dataset were of 

longer duration than those in other studies, 20 of the 29 courses were of more than 30 weeks 
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duration, meaning that more data was available to train the models. Studies using LMS data 

from university courses typically use data from relatively short courses, for example 

Tempelaar et al (2015) used only seven weeks of LMS data when concluding that such data 

did not substantially predict academic performance. It is also worth noting that although 

levels of Moodle usage varied a lot both between and within courses, there was 

proportionally less ‘passive’ activity (viewing content) on the courses in this study than some 

previous researchers found. Less than 83% of the activity in this dataset was passive. 

Sandoval et al (2018) found over 95% of the activity in their dataset was passive. In this 

study although there was little activity indicating interaction between students there was 

proportionally more activity indicating interaction with the system (e.g. taking quizzes, 

submitting assignments). Interestingly, on the only course (course M) which utilised the 

forum that allows students to interact with one another, the variable number of forum posts 

was highly correlated with student’s final course mark (Pearson correlation coefficient=0.67, 

see Figure 2).  

One of the main benefits of being able to predict whether students will pass or fail a course is 

to provide some type of assistive intervention to “likely to fail” students so that this outcome 

can be avoided. Therefore, models were built on two subsets of the original Moodle activity 

logs. One consisting of data for the first six weeks of courses and the other consisting of data 

for the first ten weeks of courses. Although performance of the binary classifiers was good 

when LMS data for the full duration of courses was used to create the predictors, 

performance on these datasets from early courses was not as good.  

None of the models significantly improved on the no-information rate on the six-week 

dataset. Random forest, the best performing model, correctly predicted only 14 out of 47 

failing students. The addition of four extra weeks of data improved performance somewhat 

and both random forest and gradient boosting performed significantly better than chance on 

the ten-week dataset. Even here however the models were still only correctly able to identify 

a minority of failing students (23 out of 51 for Gradient Boosting). This might suggest that 

although LMS data can be a useful component of early warning models it is insufficient on 

its own to identify most failing students. However, this study did not include as predictors, 

assessment results, multiple fine-grained measures of LMS usage or (with the exception of 

one course which showed a positive correlation) measures of student interaction with one 

another. Given that these have been shown to be predictive of academic performance 

previously (Azcona & Casey, 2015; Civitas 2016; Conijn et al, 2016; Howard et al 2018; 

Macfadyen & Dawson, 2010; Zacharis, 2015), it is likely that the predictive accuracy 

observed in this study can be improved further.  

 

Although random forest showed greater overall accuracy on the ten-week prediction task, 

gradient boosting classified more failing students correctly (23 vs 21 for random forest) and 

might be preferred if it could be shown to consistently demonstrate higher recall since the 

cost of misclassification on this task is not the same for each class. Failing students will likely 

cost both themselves and the college more than an unnecessary intervention or offer of help 

resulting from a false positive will. Given the relatively low cost overhead involved in 

implementing an early warning system based on LMS usage, the ability to detect early a 

minority of students at risk of failure could be very useful, even if it only prevented a small 

number of students from early exit or course failure. 

 

Regarding variable importance, regularity of login was the most important predictor for both 

the whole course dataset and the early course datasets. The magnitude of importance of this 
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variable was lower for the early datasets, however. Logging in regularly was associated with 

better final course marks and grades. This may be considered to support the view held by 

some researchers that proxy variables measuring students time management strategies can be 

useful when predicting student performance (Jo et al, 2015). It is not surprising that this 

variable is important as it may be considered a proxy for attendance. It shows how many days 

a student logged in as a proportion of all the days that any student logged into the course. 

Number of assignment submissions, which was the second most important variable for the 

grade prediction task, dropped out of the top ten most important variables for the early 

warning models. Most assignment submissions are likely to occur later in the course which 

means this variable is unavailable as a useful predictor for early warning models and may be 

one of the reasons why performance suffers in comparison with models built on data from the 

whole duration of courses. 

 

The most predictive variable across all datasets in this study, login regularity, is a derived one 

rather than a frequency count. This might reinforce the suggestion that attempts to improve 

predictive accuracy should include derived measures of LMS usage. These could usefully 

include measures relating to student's attendance, fine-grained measures of engagement with 

course materials, and interactions with one another in the LMS. Best performance is likely to 

come from using datasets that combine features derived from LMS usage with more 

traditional indicators such as assessment results (Lu et al, 2018). Course designers should 

therefore give thought to building some form of early assessment into their courses and to 

utilising LMS features that promote student to student interaction. 

 

 

5. Conclusion 

Moodle use is integrated across a variety of programmes within the Further Education 

Division of Limerick and Clare Education and Training Board. The system saw over 100,000 

logins during the calendar year 2017. There are over 900 courses on the Moodle site though 

not all of these are active. The analyses for this study were based on a small subset of these 

courses consisting of 690 enrolments across nine modules over six years all delivered by the 

same faculty member. 

There were two related research questions in this study. Both considered whether it is 

possible to predict student performance using only Moodle data from a blended learning 

Further Education setting. The first of these looked at whether student’s performance can be 

predicted using Moodle data across the whole duration of a course and the second at whether 

a student will pass or fail can be predicted using only Moodle data gathered early in a course 

i.e. at six and ten weeks. 

The results showed that by using Moodle data from the whole course it was possible to 

predict student alphabetic grade moderately well and whether a student would pass or fail 

very well. All the algorithms performed statistically significantly better than the no-

information rate on these tasks with best performance given by random forest. To be of more 

practical use however it is desirable to know early in the course whether a student may be at 

risk of failing the course.  

Classifiers trained on a six-week dataset performed no better than chance but those trained on 

a ten-week dataset did significantly better than chance. Even the algorithm best able to 
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identify failing students at ten weeks only classified 23 out of 51 failing students correctly 

therefore it is concluded that although Moodle data may be useful as a component of early 

warning models at ten weeks it is unlikely to be sufficient on its own to accurately predict 

most failing students. Predictive accuracy might improve using other variables derived from 

LMS usage and combining these with offline information such as assessment results. The 

ability to predict early students at risk of failure may be considered useful even if only a 

minority of such students are identified since the benefits might well outweigh the costs.   

Nearly all variables in the dataset showed a positive correlation with student mark indicating 

that in general higher levels of Moodle usage were associated with higher final course marks. 

On the best performing algorithm, random forest, regularity of login was the most important 

variable when predicting academic performance across all datasets.  

 

Ideally, the results observed in this study should be replicated with larger FET datasets. The 

sample size in this study was relatively small. All students in this sample were attending 

modules in the same discipline with the same instructor, which limits generalisability of 

results. It remains to be seen what degree of predictive accuracy is achievable on Moodle 

data aggregated across a broader set of FET disciplines. More fine-grained measures of LMS 

usage, combined with results of formative assessment, may be useful for increasing accuracy 

and shortening the time scale further within which at-risk students can be identified.  
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